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ABSTRACT

Previous studies analyzing the evanescent nature of acoustic waves in the lower solar atmosphere,
up to 300 km above the photosphere, have shown an unexpected phase shift of an order of 1 s be-
tween di↵erent heights. Those studies investigated the spectral line Fe I 6173.3 Å, commonly used for
helioseismic measurements. Such phase-shifts can contribute to a misinterpretation of the measured
travel times in local helioseismology, complicating inferences of, e.g., the deep meridional flow. In
this study, we carry out phase-shift computations using a simulated, fully radiative, and convective
atmosphere from which the Fe I 6173.3 Å line is synthesized. The resulting phase-shifts as functions of
frequency across multiple heights show non-zero values in evanescent waves, similar to what was found
in observational data. Comparing the Doppler-velocities estimated from the synthesized absorption
line with the true velocities directly obtained from the simulated plasma motions, we find substantial
di↵erences in phase-shifts between the two. This leads us to hypothesize that the non-adiabaticity of
the solar atmosphere yields extra phase-shift contributions to Doppler velocities. Finally, computing
phase-di↵erences for di↵erent viewing angles reveals a systematic center-to-limb variation, similar to
what is present in observations. Overall, this study helps to improve our understanding of the physical
cause of the helioseismic center-to-limb e↵ect.
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1. INTRODUCTION

Meridional circulation is a key component in explaining the solar cycle mechanism (e.g., Babcock 1961; Hathaway
2015). Although surface measurements of the meridional circulation were reliably measured by various methods (e.g.,
Komm et al. 1993; Hathaway 1996; Roudier et al. 2018), the estimates of deep circulation still carry large uncertainties
to this day, presenting an unclear and conflicting picture among di↵erent authors (e.g., Zhao et al. 2013; Schad et al.
2013; Rajaguru & Antia 2015; Jackiewicz et al. 2015; Chen & Zhao 2017; Böning 2017; Gizon et al. 2020). Inferences
of the deep meridional circulation rely on helioseismic measurements that can be inverted for depth-dependent velocity
profiles (see, e.g., Christensen-Dalsgaard 2002; Gizon & Birch 2005). Aside from complications with the complexity of
inversion techniques, especially in active regions (Kosovichev 2012), the helioseismic measurements themselves carry
uncertainties and systematic e↵ects. For instance, Duvall (2003) found a significant decrease with latitude in travel
times of waves with same travel distances. When looking for asymmetries between wave travel times in opposite
traveling directions (i.e. travel-time di↵erences), Duvall & Hanasoge (2009) showed that a systematic e↵ect a↵ects
measurements performed along the equator. Zhao et al. (2012) expanded this procedure to the entire solar disk and
highlighted the presence of systematic center-to-limb variations in the helioseismic travel times. Although these results
allow for an empiric treatment of the e↵ect, its underlying cause is not well understood. An important component of
the center-to-limb e↵ect is its variation with the conceived atmospheric height. Zhao et al. (2016) investigated the e↵ect
due to geometric foreshortening, which may introduce perturbations to wave travel times due to a systematic shortening
of travel distances as measurements are taken increasingly closer to the solar limb, and found that mean travel times
are weakly a↵ected and travel time di↵erences remained largely unchanged. Another important characteristic of the
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center-to-limb e↵ect was found by Chen & Zhao (2018), who demonstrated that the e↵ect strongly depends on the
frequency of acoustic waves, where the maximum perturbation to the travel-time di↵erences forms around 3.7mHz.
Recently, Zhao et al. (2022) reported an important finding that acoustic waves in the lower solar atmosphere carry

unexpected phase-shifts that can result in spurious travel-time shifts of up to 1 s, which may help understand the
nature of the helioseismic center-to-limb e↵ect. Such systematic phase-shifts must be taken into account for accurate
inferences of the deep meridional flow. Other helioseismic results such as supergranular and sunspot flows may be
a↵ected as well. In this context, evanescent waves are understood as standing waves with frequencies below the
acoustic cut-o↵ frequency, which exhibit an exponentially decaying amplitude as they reach into higher atmospheric
layers. Thoroughly explaining the extra phase-shifts carried by evanescent acoustic waves is non-trivial. Zhao et al.
(2022) postulated the following: An evanescent acoustic wave present in the lower solar atmosphere causes a periodic
compression of local plasma volume. The resulting temperature oscillation is likely out of phase in the non-adiabatic
atmosphere near and above the Sun’s photosphere, which can cause a phase lag between temperature perturbations
and local plasma compressions. Thus, the Doppler velocity derived from the measured intensity likely carries a spurious
phase-shift relative to the plasma velocity.
To investigate the origin of the extra phase shift in helioseismic travel times, we perform an analysis of 3D radiative

simulations and the corresponding synthesized Fe I 6173 Å line profiles that show a systematic increase of the line
formation height for areas closer to the solar limb (Kitiashvili et al. 2015). In this paper, we apply similar analysis
procedure as described by Zhao et al. (2022) to investigate the evanescent nature of acoustic waves using the same
simulation as Kitiashvili et al. (2015). This paper is structured as follows: Section 2 describes observational data
and simulations, and in Section 3 we explain the methods used leading up to the computation of instantaneous wave
phases. Finally, we present our results in Section 4, discuss them in Section 5, and draw our conclusion in Section 6.

2. DATA AND SIMULATION

In this study, we evaluate the instantaneous wave phases in the form of phase-di↵erences ��, measured from a set of
realistic numerical simulation data of the solar atmosphere. The simulation data, obtained using the StellarBox code
developed at NASA/Ames Research Center (Wray et al. 2015, 2018), were previously used to study center-to-limb
e↵ect (Kitiashvili et al. 2015). This dataset is also used to simulate the line profiles of Fe I 6173Å, the same line
used by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) (Schou et al.
2012), through employing the SPINOR/STOPRO code (Solanki et al. 1992; van Noort 2012). For the purpose of
validating the phase-di↵erences measured from the simulation dataset, we also compute �� using observations by the
Interferometric BIdimensional Spectropolarimeter (IBIS; Cavallini 2006). The same IBIS dataset was well described
by Rajaguru et al. (2010) and Zhao et al. (2022), so we only present a quick summary here in section 2.1.

2.1. IBIS data

The IBIS observations used in this study comprise a spectrally resolved and fully tracked patch of quiet-Sun around
a sunspot. The observations were made on 2007 June 8 using IBIS installed at the Dunn Solar Telescope of the
National Solar Observatory, Sacramento Peak, New Mexico, USA (Cavallini 2006). IBIS features a spectral resolution
of 25mÅ, used to resolve the Fe I 6173.3 Å, a line commonly observed for helioseismic studies. The patch is tracked
for a duration of 7 hours, with a cadence of 47.5 s, a spatial resolution of 0.00330, and a field of view of 60 ⇥ 60Mm.
Line-of-sight (LOS) Doppler velocities of local plasma motions are obtained by measuring the shift of the spectral
line. We refer the readers to the detailed description of the Doppler shift calculations to Rajaguru et al. (2007, 2010).
Since the line is spectrally resolved, we can extract velocities within the line wings at di↵erent intensity levels that can
roughly be translated to atmospheric heights.

2.2. Simulation data

In this study we use a three-dimensional hydrodynamic radiative simulations obtained with the StellarBox code
(Wray et al. 2015, 2018). The computational model uses a large-eddy simulation (LES) treatment of subgrid turbulent
transport. The radiative transfer has been computed in the local thermodynamic equilibrium (LTE) approximation.
A three-dimensional multi-spectral-bin long-characteristics method is used to calculate the radiative transfer between
fluid elements. Thereby, the ray-tracing transport is performed using the Feautrier (1964) method with 14 rays after
ionization and excitation of all abundant species are taken into account. The boundary conditions are periodic in
lateral directions, while the top boundary is open to mass, momentum, and energy and radiation fluxes. The bottom



3

boundary is open only for radiation and has the energy input from the interior of the Sun. We used a standard solar
model of the interior structure and the lower atmosphere (Christensen-Dalsgaard et al. 1996) and randomly distributed
velocity perturbations with amplitude of few cm/s. Once the modeling reaches a steady state condition, the simulation
exhibits observed dynamics and turbulent properties of a quiet-Sun region (e.g., Kitiashvili et al. 2011, 2012, 2023;
Hathaway et al. 2015).
The computational domain covers 5.2Mm of upper layer of the convection zone and an atmospheric height of 1Mm

relative to the e↵ective temperature of the Sun from 1D solar model S (Christensen-Dalsgaard et al. 1996). Since
we are only interested in waves above the photosphere, we limit ourselves to a height of 400 km with a vertical grid
spacing of 12.1 km. In this work, we use simulation data for 1.05 hours with a temporal cadence of 50 s. To mimic
the e↵ect of di↵erent locations of the simulated area on the solar disk, we also use synthetic data sets obtained with
a viewing angle ↵ = 0� (disc center), 45�, and 60� (Figure 1), in which original models of the solar atmospheres have
been projected to the corresponding line of sight (LOS).
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Figure 1. Illustration of the viewing angle geometry. The upper row shows the simulation boxes with coordinate frames on the
top. In the bottom row, the respective theoretical disk location is illustrated. From left to right: ↵ = 0�, 45�, 60�. For ↵ = 0�,
the LOS direction coincides with the z-axis, while for the larger ↵ the LOS is situated in the z–y–plane.

3. METHODS

Solar oscillations are observed using Doppler velocities, calculated from the Doppler shift of an atomic absorption line
relative to a reference profile. Di↵erent methods have been developed to estimate the Doppler shift, and ultimately,
the line profile has to be measured as a function of wavelength. In this study, we consider two di↵erent velocity-
deriving procedures, the bisector method and the HMI-like algorithm (see Sec. 3.1 for details). In addition, we utilize
available 3D simulations to compare the simulated LOS flow field (‘true’ LOS velocities, vLOS

true ) and the Doppler shift
derived from synthetic iron line profiles to investigate discrepancies between them. For an accurate comparison of
LOS velocities obtained directly from the numerical model and derived from synthesized spectroscopic data, we have
to define the relative height for both quantities. The proposed method allows us to approximate the intensity-height
relation, translating intensity from the line wings N = I(�)/Ic to atmospheric height z (Ic is the continuum intensity).
Afterwards, we compute the power spectra for both LOS velocities, which is necessary for the filter that is applied to
consider only acoustic modes.

3.1. Estimating velocities

3.1.1. Bisector

Here, we adopt the same procedure described by Rajaguru et al. (2010) and Zhao et al. (2022) to estimate Doppler
velocities as a function of intensity level N . First, the spectral line is interpolated and sampled at 10 equally distributed
intensities N = I(�)/Ic with N = (0, 10, ..., 90)%, relative to the continuum intensity Ic. At each N , the line profile
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has two intensity values with respective wavelengths �blue and �red. The shift from the rest frame of reference with
�0 = 6173.341 Å at each N is called the bisector. Doppler velocities vNd are calculated according to

vNd =
(�blue + �red) /2� �0

�0
· c , (1)

where c is the speed of light and N = 0 corresponds to the line-core intensity level and therefore the largest height
within the atmosphere. A snapshot of the IBIS observations, including an example of Doppler velocity time-series
vNd , is shown in Figure 2 and similarly, results from the simulation data are shown in Figure 4. Note that for most
visualizations in this study, we limit ourselves to displaying just four intensity levels and therefore the Doppler velocities
v20d , v40d , v60d and v80d . In general, Doppler velocities vNd are implicit functions of the atmospheric height z, thus, each
N has an approximate atmospheric layer corresponding to it, as illustrated in Figure 3.

Figure 2. Doppler velocities extracted from the IBIS dataset. Panel (a) shows a snapshot of the full FOV of Doppler velocities
estimated using the bisector method at an intensity level of 80%. Panel (b) shows the same snapshot, with filtered Doppler
velocities, as described in 3.3. Black dashed circles highlight the excluded magnetic area with a sunspot, where all signals within
the inner circle are masked. Panel (c) shows a Doppler-velocity time series at four di↵erent intensity levels taken from a single
pixel, as indicated by a black ‘⇥’ in panel (b), for an arbitrary time period.

3.1.2. HMI-like algorithm

Given the design of the MDI instrument onboard the SOHO observatory, estimating the Doppler velocity has to be
achieved using spectral filter transmission functions (Scherrer et al. 1995). In the following, we will approximate the
six di↵erent SDO/HMI (Schou et al. 2012) filter profiles, which are similar to their MDI counterparts, and label this
method HMI-like and the resulting Doppler velocity vHMI

like . Following the procedure suggested by Couvidat et al. (2012),
we estimate the first Fourier components a1, b1 using the filtered line profile intensity as a function of wavelength I(�):

a1 =
2

T

Z +T
2

�T
2

I(�) cos

✓
2⇡

�

T

◆
d� (2)

b1 =
2

T

Z +T
2

�T
2

I(�) sin

✓
2⇡

�

T

◆
d� , (3)

where T = 412.8mÅ is the total wavelength domain. Now we compute vHMI
like according to

vHMI
like =

dv

d�

T

2⇡
atan

✓
b1
a1

◆
, (4)

with dv/d� = 48562.4m s�1 Å�1.
As a last step, vHMI

like must be corrected using look-up tables, generated from a reference Fe I line at rest (in this
case, the reference line profile is obtained from a spatial average of all line profiles in the simulation domain shown in
Figure 3). By shifting the reference line profile in wavelength to simulate a Doppler velocity and convolving the profile
for each shift with the HMI filter transmittance functions, the uncorrected vHMI

like is obtained. The look-up tables are
therefore the inverse function of this process, such that the corrected vHMI

like can be obtained from interpolating the
table.
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z

Figure 3. Illustration of estimating Doppler velocities using the bisector method. The left panel shows the absorption line
profile of the 6173.34 Å as a function of wavelength I(�). The line is then sampled at di↵erent intensity levels (relative to the
continuum intensity, corresponding to 100%), N . The vertical line indicates the wavelength in the rest frame of reference (black,
dashed) and the magenta line shows the calculated bisector of the line. The asymmetries caused by the Doppler shift at each
level can then be translated to a Doppler velocity vNd at di↵erent heights z within the solar atmosphere. This is illustrated
on the right, highlighting how each intensity level corresponds to a di↵erent layer in the atmosphere. Curved lines illustrate
propagating acoustic waves traveling between such layers.

3.1.3. True velocity

Aside from estimating Doppler velocities using the intensities that result from the line synthesis, we analyze the
actual velocity field (or ‘true’ velocities) from simulations. The oscillations are thus entailed in the true velocity vector
vtrue. Similar to the observational data, a snapshot plus an arbitrary time-series are shown in Figure 4. The simulated
vertical velocity shown in Figure 4b is extracted at a geometrical height of z = 87 km, which roughly translates to an
intensity level of 80%. It is not surprising to see both Doppler and true velocities behaving similarly in their variation
trends, although di↵erences, especially in amplitude, are also apparent.

Figure 4. Vertical velocities extracted from the simulation dataset. Panel (a) shows a snapshot of the simulation box at a
geometric height of z = 87 km. Panel (b) shows the corresponding filtered velocities similar to what is shown in Figure 2.
Panel (c) shows a velocity time series, taken at the black ⇥ in panel (b) for four di↵erent intensity levels similar to Figure 2.
Additionally, the dashed black line shows the true velocity vz=87 km

true .

In order to compare Doppler and true velocities, we consider the LOS component of vtrue. Given the fact that ↵
imitates a longitudinal location, considering the z component vz as the vertical direction and the y component vy as
the horizontal direction is su�cient (see Figure 1). Because of the small horizontal size of the simulation box (6.4Mm),
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we neglect the latitudinal variation LOS and apply the same viewing angle to all pixels in the simulation domain. This
simplifies the computation of the true LOS velocity to

vLOS
true (↵) = vz sin (↵)� vy cos (↵) . (5)

3.2. Formation heights

Among di↵erent systematic e↵ects influencing the helioseismic measurements mentioned earlier, variation of the line
formation height plays an important, if not a dominant, role. When comparing Doppler velocities to true velocities, we
have to ensure that they are extracted from the same atmospheric height. An established approach to this problem is
demonstrated by Fleck et al. (2011) and Kitiashvili et al. (2015). The procedure can be described as selecting Doppler
velocities vNd from one intensity level N and finding its best match among all the true velocities vtrue(z). Matching
vNd for all N thus gives us the intensity level as a function of height N(z). Quantitatively evaluating the best match
can be done by maximizing the Pearson correlation coe�cient, max(c(↵, z)), with

c(↵, z) =

X

x,y,t

⇥�
vNd (↵)� v̄Nd (↵)

� �
vLOS
true (↵, z)� v̄LOS

true (↵, z)
�⇤

sX

x,y,t

(vNd (↵)� v̄Nd (↵))2
X

x,y,t

(vLOS
true (↵, z)� v̄LOS

true (↵, z))
2
, (6)

where
P
x,y,t

represents the sum over all pixels and time steps, and v̄ is the mean of v (averaged over t in this case). Here

we employ a cubic interpolation in z to allow the formation height to fall between grid points of the z-axis. Finally,
the maximum cmax(↵, z) = max(c(↵, z)) for both the bisector method and the HMI-like method are shown in Figure
5.

, ,

, ,

0 0 0

Figure 5. Estimations of the geometric height of the solar atmosphere obtained with two methods for three distances from
the disk center: cross-correlation of the true velocity field with a) selected line profile levels and b) Doppler velocities obtained
with the HMI algorithm. These relations allow us to obtain an approximate height z for all the intensity levels used, called the
equivalent height. Di↵erent colors indicate di↵erent viewing angles, ↵.

The intensity-height relation shows the expected behavior, with the Fe I 6173 Å forming between 65–208 km, the line
core representing the highest layer in the atmosphere, larger viewing angles leading to a general shift towards larger
line-forming heights and the HMI algorithm yielding an atmospheric height of roughly 116–160 km. These results also
agree with the study by Kitiashvili et al. (2015). Regarding error bars, we employ a Gaussian fit to c(z) as a function
of height and adopt the error of the correlation function �c(z) to roughly equate the variance �fit(z) of the Gaussian.
This procedure can only produce approximate results, since the true distribution of c(z) is not Gaussian. Generally,
we can assume that �fit(z) is slightly underestimated.
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Although we show error bars for the intensity-height relation, it is important to understand that this does not mean
Doppler velocities correspond to a single value height from which we can extract the true velocities. In fact, the
error bars in Figure 5 can only represent how well vtrue correlates to vd, not the actual height interval covered by
the line formation process. Although the two may be related in some way, it must be kept in mind that the range in
height that contributes to our given Doppler velocities cannot be known with certainty, unless we compute accurate
(but nevertheless synthetic) intensity contribution functions. In the following we will represent vd as forming at a
single valued height, purely for notation purposes, but the uncertainty in formation height still applies to all Doppler
velocities.

3.3. Filtering

In the recent study by Zhao et al. (2022), a Gaussian-filter with a width of � = 0.00637 was used to smooth the
data to enhance the signal-to-noise ratio. Similarly, we apply a Gaussian smoothing to the simulation data, albeit
using a much narrower width of � = 0.00022 (1.28 pixels), since the spatial scale of the simulation box is smaller and we
have to ensure to capture the medium-sized oscillation modes. Reducing the spatial resolution may strongly a↵ect the
estimation of the line-formation height (Kitiashvili et al. 2015). Here, we analyze di↵erent smoothing �’s and conclude
that changes in the formation height only start to become noticeable for � > 0.00087 (⇡ 5 pixel).
Given the fact that we are only interested in analyzing p-mode acoustic waves, a filter needs to be applied accordingly.

This filter is designed to erase granulation and f -mode signals and is adopted from the data analysis procedures by
Zhao et al. (2022) (see also Figure 6).

3.4. Estimating power

Filtering is performed in the Fourier domain, for which we define F
�
v(x, y, z, t)

�
= eV (kx, ky, z, ⌫) as the Fourier-

transform of v(x, y, z, t), where (kx, ky) are the horizontal wave numbers in (x, y) direction. The spectral power P is

calculated as the absolute square of the eV :

P (`, ⌫) = |eV (`, ⌫)|2, (7)

where ` is the harmonic degree with ` = 2⇡R�

q
k2x + k2y with R� denoting the radius of the Sun. In Figure 6 we show

the azimuthally-averaged power for both vz and vy, highlighting the f -mode ridge. The f -mode ridge and all signals
with lower frequencies are filtered out.
From the power spectra we see that the horizontal oscillation seen in P (vy) show large amplitudes even beyond the

granulation domain. Generally we do not expect strong horizontal oscillation power in the acoustic domain. This
is likely due to the excitation mechanism in the simulation and may be adjusted by modifying the compressibility.
For viewing angles other than ↵ = 0� it is therefore important to keep in mind that the horizontal component of the
velocity has a large contribution to the LOS velocity (see Equation 5).
The e↵ects of the filter on the velocity fields is shown for one snapshot in Figure 7. From this, it can be seen that

small scale as well as long time period features, such as granulation and turbulent flows are removed.

3.5. Estimating phase-shift

For this study, we compute the phase-di↵erences �� between di↵erent heights as functions of (x, y) before performing
a spatial average. After the velocities are filtered in the Fourier domain as mentioned above, they are spatially
transformed back yielding eV (x, y, z, ⌫). From there, we compute phase-di↵erences as

��ij(x, y, ⌫) = arg
h
eV (x, y, zi, ⌫), eV (x, y, zj , ⌫)

i
. (8)

Note that zi can also correspond to intensity levels N according to Figure 5. In order to reduce noise as much
as possible, ��ij(x, y, ⌫) is then spatially averaged. In the following we will use a more concise notation to denote
phase-di↵erences between di↵erent velocities. For example ��[v20d , vz=87 km

true ] denotes ��ij(⌫) for zi ⌘ N = 20% and
zj = 87 km.
It must be noted that the spatial average of ��ij(x, y, ⌫) is not always straightforward, since the arg-function can

result in values outside of the unit circle (i.e. ��ij(x, y, ⌫) > ⇡ or < �⇡). Such occurrences therefore have to be
treated in an extra step. This is done by discarding all the pixels (x0, y0) where ��ij(x0, y0, ⌫) is more than two
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Figure 6. Power spectra P (`, ⌫) of vertical and velocities vz (a) and horizontal vy (b), both as functions of harmonic degree `
and temporal frequency ⌫. The velocity fields are taken at a geometric height of z = 150 km. The f -mode ridge is shown as the
orange curve in both plots. An arbitrary slice at ` = 965 is shown in panel (c).

Figure 7. Doppler and true velocities from the simulation data, shown for equivalent heights and the same timestep. Panel (a)
shows vz=87 km

true before applying the f-mode filter, while panel (b) shows the same velocity field after the filter is applied. Panel
(c) and (d) are the same but for v80d .

standard-deviations ��� away from the mean values, and the ��� is derived from the ��ij(x, y, ⌫) distribution for all
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pixels (x, y) at constant ⌫. After discarding the pixels showing outlier values in this way, the standard-deviation ���(⌫)
of ��ij(x, y, ⌫) is recomputed as a function of ⌫, which then represents the error for ��ij(⌫).

4. RESULTS

Although we expect that the phase-di↵erences derived from the simulated velocities show di↵erences compared to
the observed Doppler velocities, it is still of interest to gauge how di↵erent they compare to each other. A direct
comparison is shown in Section 4.1. When estimating phase shifts from observations, we are limited to using intensity
measurements of line profiles for the computation of Doppler shifts, which means the resulting Doppler velocity is an
implicit product of local temperature oscillations. The true plasma motions, provided by the simulation data, may show
systematic phase-shifts compared to Doppler oscillations as stated above. We compare the phase-di↵erence, ��ij(⌫),
derived from Doppler velocities and from true velocities in Section 4.2. Finally, accurate helioseismic measurements
rely on accurate estimates of systematic center-to-limb e↵ects. After this, we investigate the phase-di↵erences in the
lower atmosphere as a function of viewing angle ↵, presented in Section 4.3.

4.1. Observational data vs. simulated data

Comparing wave phases between observations and simulation data can best be done by looking at ��ij(⌫) derived from
Doppler velocities vd, as well as true velocities vtrue (for the simulation only). Here, we use ��[X] with X = [v20d , v80d ],
[v40d , v80d ], [v60d , v80d ]. To extract the plasma velocities from simulations at the exact height values that match the
equivalent intensity levels N = 20%, ..., 80%, we applied a cubic spline interpolation. The comparison of the resulting
phase-di↵erences for simulated data and IBIS observations corresponding to the disk center is shown in Figure 8.

Figure 8. Phase-di↵erences �� at the disk center as function of frequency ⌫ for Doppler velocities vd derived from the bisector
method for IBIS data (dashed curves), vd derived from simulation data (solid), and true velocities vtrue (black, solid curves).
The phase-di↵erences are shown for ��[X] (from left to right): X = [v20d , v80d ], [v40d , v80d ], [v60d , v80d ].

Across all three panels in Figure 8, we find a decreasing trend in the overall amplitude of the ��ij(⌫) with decreasing
height di↵erence between the di↵erent layers (see also Figure 3). This is expected in the sense that phase-di↵erences
between neighboring layers, at least for propagating waves, are smaller than phase-di↵erences between far-apart layers.
However the overall expectation is that waves are evanescent with little to no phase-di↵erences. We can thereby confirm
that the unexpected behavior reported by Zhao et al. (2022) is also seen in numerical simulations. Nevertheless, the
results also show a clear disagreement between the simulated wave phases and the observed wave phases. While
they are at similar levels in magnitudes, we see di↵erences between ��[vd, vd] and ��[vtrue, vtrue] for all ⌫. From one
side, the phase di↵erence computed from the simulated Doppler velocities especially shows uncharacteristic behavior,
where ��[v20d , v80d ] is negative for all ⌫ while both ��[v40d , v80d ] and ��[v60d , v80d ] show positive values for ⌫ > 6mHz.
Otherwise, ��[vtrue, vtrue] qualitatively appears to be more in line with the observational data. The sign change occurs
at around 4mHz in true velocities, which is roughly 1mHz larger compared to the observational data. In amplitudes,
��[vtrue, vtrue] is roughly two to three times larger than �� estimated from observations.
For problems including dynamic processes in complex atmospheres, such as propagation of acoustic waves in the

upper photosphere, it is extremely challenging to tune simulation parameters such that output data precisely match
observations. Our main insight from Figure 8 is that, qualitatively, both real and simulated data exhibit non-evanescent
acoustic waves.
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4.2. True velocity vs. Doppler velocity

Discrepancies between true and Doppler velocities are expected in the lower solar atmosphere due to the aforemen-
tioned decoupling between perturbations in the gas and the according responses observed in intensity, and also due
to di↵erences in atmospheric heights (see Section 3.2). It is thus interesting to further investigate direct comparisons
between ��[vd, vd] and ��[vtrue, vtrue] for the same height intervals. Here, this is done for ��[v20, v80], in which case the
equivalencies of N = 20% and N = 80% correspond to z = 187 km and z = 87 km heights, respectively, for the true
velocities. The resulting phase-di↵erence and travel-time di↵erence, with �⌧(⌫) = ��(⌫)/2⇡⌫, are shown in Figure 9.

Figure 9. (a): Comparison between phase-di↵erences ��(⌫) for Doppler velocities (red) and true velocities (blue). Here, the
vertical velocity vz is interpolated to match the approximate height of its corresponding intensity level N (the equivalent height)
according to Figure 5. (b) Travel-time di↵erence �⌧(⌫) corresponding to the ��(⌫) in panel (a).

Substantial di↵erence between ��[vd, vd] and ��[vtrue, vtrue] is apparent in Figure 9, confirming our aforementioned
speculation. To restate our earlier point: in the lower solar atmosphere, the environment considered non-adiabatic can
give rise to complex behaviors following perturbations in the atmosphere by, for example, an acoustic wave. It can thus
be the case that such a perturbation is not instantaneously translated to an according modification in other properties
of the atmosphere, such as temperature (and thus intensity). Therefore, the discrepancy observed between ��[vd, vd]
and ��[vtrue, vtrue] could be an indicator to that such complex behaviors indeed a↵ect Doppler velocities and their
phases. Figure 9a shows a qualitative agreement between phase-shifts for the Doppler shift and simulated velocities
at di↵erent heights of the atmosphere. Quantitative discrepancies more than 6 s correspond to low frequencies.
Such a substantial discrepancy between ��[vd, vd] and ��[vtrue, vtrue] raises an important question: What does the

phase-di↵erence between vd and vtrue, i.e. ��[vd, vtrue], look like at the same atmospheric height? This phase-di↵erence
has to be treated carefully because the definitions of height are di↵erent for both quantities vd and vtrue. Although
we can consult our intensity-height relation, shown in Figure 5, and extract vd, vtrue at equivalent heights (again,
interpolating vztrue), it is important to remember that vd is formed in a large height-interval, while vtrue can be
extracted from a clearly defined z-value. With that in mind, we first compute ��[vHMI

like , vz=139 km
true ] and ��[v80d , vz=87 km

true ]
to obtain two separate phase-di↵erences at their equivalent heights. Additionally, ��[vNd , vz=87 km

true ] at all other intensity
levels are presented, such that the behaviors of ��[vd, vtrue] can be studied for non-equivalent heights. The results are
shown in Figure 10.
An important observation from Figure 10 is that the ��[vd, vtrue] spectrum is seemingly dominated by a purely

⌫-dependent term while variations from di↵erent heights are small, i.e. ��[vd, vtrue](⌫) ⇡ f(⌫), where f(⌫) does not
depend on z or N . This height-independent term f(⌫) can be understood as another manifestation of the discrepancy
between ��[vd, vd] and ��[vtrue, vtrue], indicating that the discrepancy is not only related to the di↵erences in height
definition, but also to other intrinsic di↵erences between vd and vtrue.
We can have a more intricate look at the wave propagation by computing phase-di↵erences ��(z) as a function

of height. This is done by selecting a constant frequency ⌫0 (or a frequency band) and constructing ��(z) as a list
of ��[v(z), v(z0)] at constant frequency (or averaged over the selected frequency band). Here we use z0 = 87 km⌘
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Figure 10. (a): Phase-di↵erences ��(⌫) obtained from Doppler velocities and true velocities for di↵erent heights. (b) Travel-
time di↵erence �⌧(⌫) corresponding to ��(⌫) shown in panel (a). For clarity, error bars are only shown for ��[vHMI

d , vz=139 km

true ],
and the errors are similar in other curves.

N = 80% and the frequency bands ⌫ 2 ([1.8, 2.5], [3.5, 4.5], [4.5, 5.5], [6.5, 7.5])mHz. This gives 81 data points for true
velocities and 10 data points for Doppler velocities.

Figure 11. Comparison between phase-di↵erences �� for Doppler velocities (solid lines connecting crosses) and true velocities
(dashed lines connecting dots). In this case, we show the growth of ��(z) as functions of height (N on the top axis and z on
the bottom axis). The height range spanned by N 2 [0%, 80%] is marked by the dark dashed lines. Each curve corresponds to
an average over a frequency band as indicated in the legend. No error bars are shown here, as they are smaller than 1%.

Analyzing the growth of phases as a function of height (Fig. 11), our expectation for ��[vz, vz0 ] in the case of a
fully adiabatic upper photosphere is a constant value of 0 for ⌫ . 5.0mHz and a monotonic decrease (if z0 < z)
for ⌫ & 5.0mHz. From Figure 11, we can see that these expectations are qualitatively met by ��[vztrue, v

z0
true] for the

frequency bands ⌫ 2 [3.5, 4.5]mHz (blue), showing �� ⇡ 0 and ⌫ 2 [6.5, 7.5]mHz (purple), showing said monotonic
decrease towards larger heights. Both of these frequency bands behave quite di↵erently for ��[vNd , vN

0

d ]. Especially, the
large ⌫ 2 [6.5, 7.5]mHz band shows an odd trend, where an eventual decrease is proceeded by an initial growth. Similar
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to the results shown in Figure 8, large as well as low frequencies seem to disagree the most between ��[vNd , vN
0

d ] and
��[vtrue(z), vtrue(z0)]. Nevertheless, almost all frequency bands show negative growth with increasing height toward
decreasing negative �� values (with the exception of ⌫ 2 [1.8, 2.5]mHz for ��[vtrue(z), vtrue(z0)] ). This is a convincing
observation of the non-evanescent nature of waves in the lower atmosphere, and the clear disagreement in phase shifts
measured from Doppler and true velocities.

4.3. Dependence on viewing angles

Frequency-dependent systematic over- or under-estimates of helioseismic travel times due to the center-to-limb
variations have been analyzed by Chen & Zhao (2018). Such systematic e↵ects stem presumably from oscillation
signals being measured at various heights, as travel-times are measured across the solar disk. It it thus expected that
variations in viewing angles (and therefore heights) have an e↵ect on the phase shifts of acoustic wave in the lower
atmosphere as well. To further investigate this, we compute phase-di↵erences as functions of viewing angle ��(↵) for
both Doppler and true velocities (Fig. 12).
A first observation that we can make from Figure 12 is that indeed, �� does strongly depend on ↵. Hereby, ��[vNd , vN

0

d ]
shows roughly similar amplitudes across all ↵, although it varies erratically around 0 for ↵ = 45� and 60�. For the true
velocities, in the case of ↵ = 45� we observe a qualitative increase in the frequency at which the sign change occurs,
and for ↵ = 60� a weaker amplitude at lower frequencies can be seen. A trend toward lower sign-reversal frequencies
reported by Chen & Zhao (2018) cannot be observed here, although the signal is too erratic to confirm this behavior.
Finally, it is important for helioseismic measurements to estimate the spurious phase-shifts between two spatially

separated points. Here we imitate two separate disk locations by computing ��[v↵, v↵=0� ], which represents the phase-
di↵erence between a region close to disk center and a region close to the limb viewed at an angle of ↵ (see Figure 1).
The result for ↵ = 45�, 60� is shown in Figure 13.
As expected, both ��[vd, vd] from the bisector and the HMI-like method behave very similarly. Interestingly, both

curves show a slight deviation from the behavior that is observed in the analysis so far: If we assume that the non-zero
phase-di↵erence observed for, e.g., ��[v↵=45�

d , v↵=0�

d ] is solely due to the height di↵erence in the respective atmosphere,
we could argue that the frequency-dependent trend should roughly show the same behavior as the green or blue curve
in Figure 12 (panel a). However, we find negative values only for ⌫ < 4mHz followed by an increase toward positive
values for larger ⌫. Furthermore, the di↵erence between ��[v↵=45�

d , v↵=0�

d ] and ��[v↵=60�

d , v↵=0�

d ] should follow the same
trend that is observed when moving from green to blue to purple (in Figure 12a), i.e. larger negative phase-di↵erences
and no positive valued phase-di↵erences. This is not observed for Figure 13. Instead, we find roughly the same values
for most ⌫. Both of these facts indicate that the di↵erence in atmospheric height is not the only cause of spurious
phase-shifts. Likely it is also the case that horizontal velocity components contribute to the di↵erences, as they are
larger than expected (see Figure 6).
Finally, ��[vtrue, vtrue] surprisingly agrees with ��[vd, vd] at lower frequencies, but exhibits no significant positive

values at larger frequencies. This is also not necessarily what is expected, based on results so far, at least at lower
frequencies, for the same reasons stated above.

5. DISCUSSION

In this study, we have used three-dimensional realistic and fully radiative simulations to investigate phase-shifts
of acoustic waves in the lower photosphere. Simulated data provide true motions in the atmosphere and thus o↵er
an opportunity of investigating the nature of the unexpected phase-shifts reported by Zhao et al. (2022). A direct
comparison between �� derived from simulated data and observations can serve to validate the accuracy of our
simulated data. However, let us reiterate that simulations and observations behaving di↵erently is not surprising in
general. Simulations can only yield a picture with limited realism, given the fact that we cannot capture all the physics
present in the real Sun. Observations on the other hand cannot be inherently wrong, however, systematic e↵ects due to
instrumental influences or an incomplete understanding of measurement procedures can always tamper with the final
data. At any rate, these results still present an advancement in understanding e↵ects due to varying line-formation
heights and non-evanescence in the lower atmosphere. The results of this work can roughly be divided into three parts,
each containing a point of major insight and summarized in the following.

5.1. Non-evanescent behavior in simulated data

Acoustic waves clearly show non-evanescent behavior below the presumed cuto↵ frequency in the simulated data
presented here. Figure 8 highlights the fact that both ��[vd, vd] and ��[vtrue, vtrue] deviate from 0 for most frequencies
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Figure 12. Phase-di↵erences ��(⌫) for both Doppler velocities (left) and true line-of-sight velocities (right) as functions of
frequency ⌫ for di↵erent viewing angles. The grey curve represents the phase-di↵erence between the 20% and 80% layer at
↵ = 0� for Doppler and true velocities respectively. For the true velocities, the base layers, to which the relative phase-di↵erences
are computed, are interpolated to match their corresponding intensity levels. For this Figure, only the respective atmospheric
heights are displayed in the legend.

and therefore confirms the non-evanescent nature of acoustic waves present in the simulated photosphere. Still, there
are clear discrepancies between phase-di↵erences derived from simulations and observations, which merit speculations.
Looking at Figures 2 and 4, we can see that, qualitatively, the velocities behave very similarly. Derivations of the
simulated velocities are based on synthesizing the Fe I absorption line, which is a challenging task. Although Kitiashvili
et al. (2015) argued a good agreement between the simulation and observational data, inherent di↵erences between
the two datasets are unavoidable.
Moreover, the spatial sampling used in our simulation data, for example, is far smaller than what is available in

observations. By implication, the actual oscillation modes that contribute to the estimation of �� (see Equation 8) can
be quite di↵erent between the two datasets. In the case of our simulation, very large ` dominate the power spectrum
(in Figure 6, left panel) and oscillations with ` < 500, which contains most of solar oscillation power, are barely
resolved. Other reasons include the presence of magnetic fields, which can not be fully removed from observational
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Figure 13. Phase-di↵erence ��(⌫) between viewing angles ↵ = 45� (a), ↵ = 60� (b) with ↵ = 0�, as functions of frequency ⌫.
These are shown for Doppler velocities (both from the bisector (red) and the HMI-like (black) estimation methods) and true
line-of-sight velocities (blue). Doppler velocities derived via the bisector method are extracted at intensity level N = 50% to
match the HMI line formation height as closely as possible (see also Figure 5). Note that the true velocities are interpolated to
match their heights to the corresponding intensity levels and the formation heights of the Doppler velocities.

data. Finally, as mentioned, identifying formation heights, i.e. estimating the intensity-height relation shown in Figure
5 is a challenging task. An exact accordance to real data can hardly be achieved. Knowing how sensitive calculations of
phase-di↵erences can be against atmospheric heights and how spectral lines are formed over a range of di↵erent heights,
we have to keep in mind that direct comparisons as shown in Figure 8 may be inaccurate at best and misleading at
worst.

5.2. Discrepancies between phases from Doppler velocities and true velocities

Another interesting insight can be gained from Figure 9, which shows phase-di↵erences between the Doppler and
true velocities. In order to make the phase-di↵erences as comparable as possible, we interpolated the true velocities
to match the heights where the corresponding intensities are formed. Evidently, ��[vtrue, vtrue] and ��[vd, vd] are
substantially di↵erent from each other. It is important to keep in mind that the computation of phase-shifts between
di↵erent layers may show an implicit di↵erence between geometrical height z and intensity levels N . Notably, the
phase-shifts obtained between di↵erent geometrical heights of the solar atmosphere capture dynamics from a wider
range of optical depths. Therefore, the variation of turbulence strength between the geometrical height in intergranular
lanes and the optical depth, which corresponds to lower atmospheric height in comparison with granulation, likely
introduces a di↵erence between ��[vtrue, vtrue] and ��[vd, vd]. The e↵ect may be amplified due to much stronger flows
in the intergranular lanes and vortical downflows. Nevertheless, both ��[vtrue, vtrue] and ��[vd, vd] are in qualitative
agreement with the observational data in its variation trend with frequency (Figure 8), although it is noteworthy that
the sign reversal occurs at roughly 4mHz in the simulation data while it occurs near 3mHz in the observation data.
Results shown in Figure 10 indicate that phase-di↵erences between the velocities themselves, ��[vd, vtrue], are domi-

nated by a frequency-dependent factor f(⌫) whereby variations in height contribute significantly less to the ��[vd, vtrue]
than f(⌫). A similar result would be expected for phase-di↵erences with a large height separation causing a similar
spectrum to f(⌫) and then introducing only small variations in height, which would explain the rest of the observed
spectrum ��[vd, vtrue](⌫) � f(⌫). In other words, a large base-discrepancy between vd and vtrue causes most of the
contributions to the resulting phase-di↵erence ��[vd, vtrue], independent of di↵erent N .
Following the hypothesis given in Zhao et al. (2022) (as summarized in Section 1) we indeed expect a phase-shift

between vd and vtrue, but we also expect little to no phase-shift between vtrue of di↵erent heights (for ⌫ < 5mHz).
The simulation nonetheless exhibits non-zero ��[vtrue, vtrue], although we neither know whether this is expected in
observation data (where ��[vtrue, vtrue] corresponds to the phase of the wave-introduced gas perturbations), nor what
causes ��[vtrue, vtrue] 6= 0 for the simulation data. It is worth mentioning that internal gravity waves can carry wave
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energy upward and yield a positive contribution to the phase-di↵erence at low frequencies (c.f. Fleck et al. 2021).
However, it is unclear if such an interpretation applies to waves in the evanescent part of the spectrum.

5.3. Dependence of �� on the viewing angle ↵

Finally, we explore how di↵erent viewing angles a↵ect our phase-di↵erence estimation. In principle, moving toward
larger viewing angles, which can be translated to moving toward the solar limb (see Figure 1), corresponds to a shift
in atmospheric heights. This shift in height is most likely the dominating cause to the helioseismic center-to-limb
e↵ect (Chen & Zhao 2018). We can translate di↵erent viewing angles to atmospheric heights using the intensity-height
relation (Figure 5), for example, Doppler velocities computed at N = 30% and ↵ = 0� corresponds roughly to the
same geometric height z as N = 60% and ↵ = 45�. Now, in our simulations, we find that this one-to-one translation
between ↵ and z is too simplistic to predict the cross-propagation (between di↵erent viewing angles) shown in Figure
13: Looking at the red curve in panel (a), representing ��[v20d (↵ = 45�), v80d (↵ = 0�)], we find a substantially di↵erent
behavior compared to the blue curve in panel (c) of Figure 12, representing ��[v60d (↵ = 45�), v80d (↵ = 45�)]. Here the
equivalent height z does not vary much (87 km to 187 km for the red curve vs. 109 km to 171 km for the blue curve).
By implication, the variation in ↵ must be the explanation to the di↵erent behaviors.
A possible explanation can be posed by the unexpectedly large horizontal oscillatory power (see Figure 6, center and

right panel), yielding significant contributions to the estimates of ��[v↵=45�

d , v↵=0�

d ] and ��[v↵=60�

d , v↵=0�

d ]. Another
factor to consider is the intensity contribution function likely strongly varying with ↵: At ↵ = 0� the spectral line
is made up of intensity contributions from a height range of roughly [150, 350] km (Fleck et al. 2011). While the
contribution function for ↵ = 45� will be shifted toward larger z, the mentioned height interval also increases. This
can be seen in z(N,↵ = 60�) (Figure 5) being much flatter than z(N,↵ = 0�). Thus, Doppler velocities at larger ↵
correspond to increasingly larger height intervals, which may introduce additional phase-shifts as observed in Figure
13. Another consideration is the emission integrated along the LOS, which will have contributions expanding into
horizontal directions as ↵ increases. Any e↵ect from this is expected to be small however, since the relevant vertical
height is below 200 km, therefore limiting the horizontal direction to just a few pixels and such small scale e↵ects are
removed by the acoustic filter. Lastly, other e↵ects may cause the ↵-dependent phase-shifts, such as the convective
blueshift (Baldner & Schou 2012), which describes observations of Doppler velocities being increasingly dominated by
granular upflows (as opposed to intergranular downflows) as we move to larger ↵.

6. CONCLUSION

As recent observations show progress in advancing our understanding of the helioseismic center-to-limb e↵ect, we
utilize state-of-art simulations to study the phase behavior of acoustic waves in the lower solar atmosphere. Roughly
dividing this work into three parts, we have compared phase-di↵erences �� measured from IBIS observations and
from StellarBox simulations, studied the di↵erent behaviors of phases derived from Doppler and true velocities a 3D
numerical model, and investigated the dependence of phase-di↵erences �� on the viewing angle ↵. In summary, our
three major insights are:

1. Acoustic waves show non-evanescent behaviors in the simulation presented here. Further investigation of this
phenomenon needs spectrally-resolved oscillation measurements at di↵erent disk locations. Suitable instruments
for such observations include BBSO/GST (Goode et al. 2010) as well as HELLRIDE (Pruthvi & Roth 2020).

2. Between Doppler and true velocities, ��[vd, vd] and ��[vtrue, vtrue] show substantial di↵erences relative to each
other, as was speculated by Zhao et al. (2022). However, we can not answer why ��[vtrue, vtrue] is non-zero within
the scope of this work. Evidently, more simulated scenarios, ideally using di↵erent simulation codes, are needed
to ensure that simulation artifacts do not play a role in this result.

3. Phase-di↵erences �� show a strong dependence not only on ⌫, but also on ↵, i.e. disk location.

Ultimately, studies of this nature allow us to further understand and quantify systematic e↵ects a↵ecting helioseismic
measurements and therefore will allow us to determine the deep meridional-flow profile more precisely.
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